MKT Metall-Kunststoff-Technik GmbH & Co. KG · Auf dem Immel 2 · 67685 Weilerbach

Besucher von www.mkt.de

MKT Metall-Kunststoff-Technik GmbH & Co. KG

Auf dem Immel 2 67685 Weilerbach

Tel.: +49 (0) 63 74/91 16-0 Fax: +49 (0) 63 74/91 16 60

www.mkt.de mkt@mkt.de

Ihre Nachricht vom

Ihre Zeichen

Unsere Zeichen

Durchwahl

Datum

PS

-38

2013-08-30

Sehr geehrte Kunden,

die Zulassung ETA-09/0350 mit dem Ausstelldatum 14.06.2013 enthielt fehlerhafte Angaben bei den Verbundspannungen im gerissenen Beton. Diese Angaben werden schnellstmöglich vom Deutschen Institut für Bautechnik (DIBt) korrigiert. Bis zur Klärung des Sachverhaltes kann das vorliegende Dokument mit dem Austelldatum 15.06.2010 verwendet werden.

Falls Sie Fragen zur Zulassung oder deren Anwendung haben, können Sie sich gerne an uns wenden.

Mit freundlichen Grüßen

MKT GmbH & Co. KG

Dipl.- Ing.(FH) P. Schmitt

Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 L 10829 Berlin Germany

Tel.: +49(0)30 787 30 0 +49(0)30 787 30 320 Fax: E-mail: dibt@dibt.de Internet: www.dibt.de

Member of EOTA

European Technical Approval ETA-09/0350

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung

Trade name

MKT Injection system VME for concrete

MKT Injektionssystem VME für Beton

Zulassungsinhaber

Holder of approval

MKT

Metall-Kunststoff-Technik GmbH & Co. KG

Auf dem Immel 2 67685 Weilerbach **DEUTSCHLAND**

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product Verbunddübel in den Größen Ø 8 mm bis Ø 32 mm zur Verankerung im Beton

Bonded anchor in the size of \emptyset 8 mm to \emptyset 32 mm for use in concrete

Geltungsdauer: vom *Validity:*

from bis to

15 June 2010

3 February 2014

Herstellwerk

Manufacturing plant

Werk 2, D

Diese Zulassung umfasst This Approval contains

24 Seiten einschließlich 16 Anhänge 24 pages including 16 annexes

Diese Zulassung ersetzt This Approval replaces

ETA-09/0350 mit Geltungsdauer vom 23.10.2009 bis 03.02.2014 ETA-09/0350 with validity from 23.10.2009 to 03.02.2014

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by law of 31 October 2006⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶;
 - Guideline for European technical approval of "Metal anchors for use in concrete Part 5: Bonded anchors", ETAG 001-05.
- Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

¹ Official Journal of the European Communities L 40, 11 February 1989, p. 12

² Official Journal of the European Communities L 220, 30 August 1993, p. 1

³ Official Journal of the European Union L 284, 31 October 2003, p. 25

⁴ Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2006, p. 2407, 2416

⁶ Official Journal of the European Communities L 17, 20 January 1994, p. 34

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product and intended use

1.1 Definition of the construction product

The "MKT Injection system VME for concrete" is a bonded anchor consisting of a cartridge with MKT Injection mortar VME or VM-ME and a steel element. The steel elements are commercial threaded rods acc. to Annex 3 in the range of M8 to M30 or reinforcing bar acc. to Annex 4 in the range of \emptyset 8 to \emptyset 32.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

An illustration of the product and intended use is given in Annexes 1 and 2.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences. Safety in case of fire (Essential Requirement 2) is not covered in this European technical approval. The anchor is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at most according to EN 206:2000-12.

The anchor may be used in cracked or non-cracked concrete.

The anchor may be installed in dry or wet concrete or in flooded holes.

The anchor may be used in the following temperature ranges:

Temperature range I: -40 °C to +40 °C (max long term temperature +24 °C and

max short term temperature +40 °C)

Temperature range II: -40 °C to +60 °C (max long term temperature +43 °C and

max short term temperature +60 °C)

Temperature range III: -40 °C to +72 °C (max long term temperature +43 °C and

max short term temperature +72 °C)

Elements made of zinc coated steel:

The element made of zinc plated or hot dipped galvanised steel may only be used in structures subject to dry internal conditions.

Elements made of stainless steel A4:

The element made of stainless steel 1.4401 or 1.4571 may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure to permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Elements made of high corrosion resistant steel:

The element made of high corrosion resistant steel 1.4529 or 1.4565 may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Elements made of reinforcing bars:

If the elements made of reinforcing bars are fully embedded in concrete, the concrete cover may be determined depending on the exposition class acc. to EN-1992-1-1 section 4. Otherwise the elements made of reinforcing bars may only be used in structures subject to dry internal conditions.

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of the product and methods of verification

2.1 Characteristics of the product

The anchor corresponds to the drawings and provisions given in Annexes 3 and 4. The characteristic material values, dimensions and tolerances of the anchor not indicated in Annex 3 and 4 shall correspond to the respective values laid down in the technical documentation⁷ of this European technical approval.

The characteristic values for the design of anchorages are given in Annexes 9 to 16.

The two components of the injection mortar are delivered in unmixed condition in side-by side-cartridges of sizes 385 ml, 585 ml or 1400 ml according to Annex 2. Each cartridge is marked with the imprint "MKT Injection mortar VME or VM-ME", with processing notes, charge code, storage life, hazard code and curing- and processing time depending on temperature.

Elements made of reinforcing bars shall comply with the specifications given in Annex 4.

The marking of embedment depth may be done on jobsite.

2.2 Methods of verification

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Anchors for Use in Concrete", Part 1 "Anchors in general" and Part 5 "Bonded anchors", on the basis of Option 1.

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

7

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the Decision 96/582/EG of the European Commission⁸ system 2(i) (referred to as System 1) of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed control plan;
- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks for the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial/raw/constituent materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.2.2 For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

⁸ Official Journal of the European Communities L 254 of 08.10.1996

The control plan is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

3.2.2 Tasks for the approved bodies

The approved body shall perform the

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- the number of the guideline for European technical approval,
- use category (ETAG 001-1, Option 1),
- Size

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited at Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design of anchorages

The fitness of the anchor for the intended use is given under the following conditions:

The anchorages are designed in accordance with the EOTA Technical Report TR 029 "Design of bonded anchors" 10 under the responsibility of an engineer experienced in anchorages and concrete work.

Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

The Techncial Report TR 029 "Design of bonded anchors" is published in English on EOTA website www.eota.eu.

4.3 Installation of anchors

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- anchor installation in accordance with the manufacturer's specifications and drawings using the tools indicated in the technical documentation of this European technical approval,
- use of the anchor only as supplied by the manufacturer without exchanging the components,
- commercial standard threaded rods, washers and hexagon nuts may be used if the following requirements are fulfilled:
 - material, dimensions and mechanical properties of the metal parts according to the specifications given in Annex 3,
 - confirmation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents should be stored,
 - marking of the threaded rod with the envisage embedment depth. This may be done by the manufacturer of the rod or the person on jobsite.
- embedded reinforcing bars shall comply with specifications given in Annex 4,
- checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply,
- check of concrete being well compacted, e.g. without significant voids,
- marking and keeping the effective anchorage depth,
- edge distance and spacing not less than the specified values without minus tolerances,
- positioning of the drill holes without damaging the reinforcement,
- drilling by hammer-drilling,
- in case of aborted drill hole: the drill hole shall be filled with mortar.
- cleaning the drill hole in accordance with Annexes 6 to 8,
- during installation and curing of the injection mortar the temperature of the concrete member shall be at least +5 °C;
- observing the curing time according to Annex 7, Table 4 until the anchor may be loaded,
- for injection of the mortar in bore holes of diameter d₀ > 20 mm piston plugs acc. Annex 8 shall be used for overhead or horizontal injection.
- installation torque moments are not required for functioning of the anchor. However, the torque moments given in Annex 5 must not be exceeded.

5 Indications to the manufacturer

5.1 Responsibility of the manufacturer

The manufacturer is responsible to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to and 4.2, 4.3 and 5.2 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval.

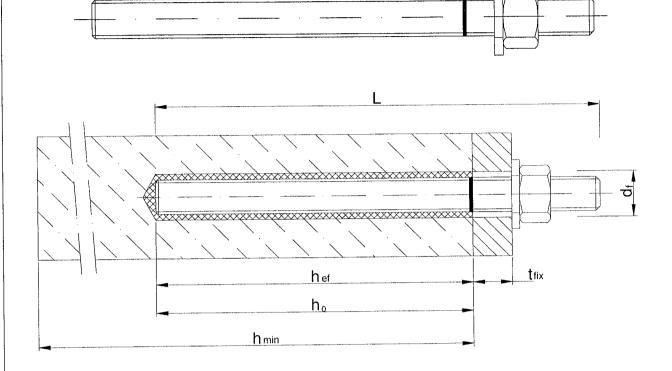
In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

The minimum data required are:

- drill bit diameter,
- bore hole depth,
- diameter of steel element,
- minimum effective anchorage depth,

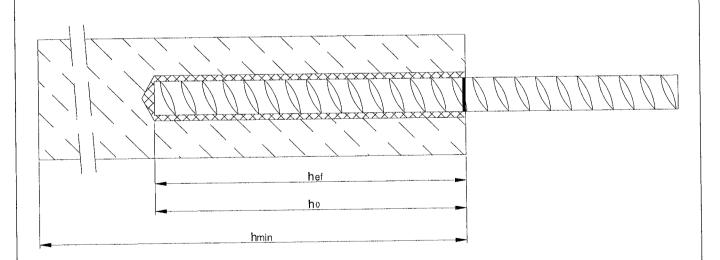
- information on the installation procedure, including cleaning of the hole with the cleaning equipments, preferably by means of an illustration,
- anchor component installation temperature,
- ambient temperature of the concrete during installation of the anchor,
- admissible processing time (open time) of the mortar,
- curing time until the anchor may be loaded as a function of the ambient temperature in the concrete during installation,
- maximum torque moment,
- identification of the manufacturing batch,

All data shall be presented in a clear and explicit form.


5.2 Packaging, transport and storage

The cartridges shall be protected against sun radiation and shall be stored according to the manufacturer's installation instructions in dry condition at temperatures of at least +5 °C to not more than +25 °C.

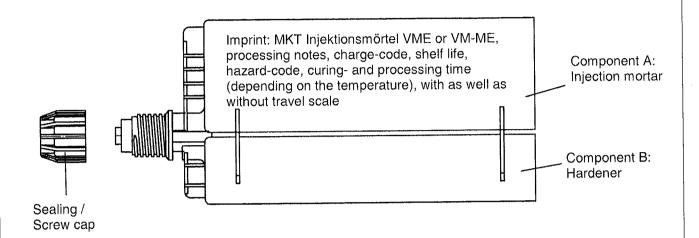
Cartridges with expired shelf life must no longer be used.


The anchor shall only be packaged and supplied as a complete unit. Cartridges may be packed separately from metal parts.

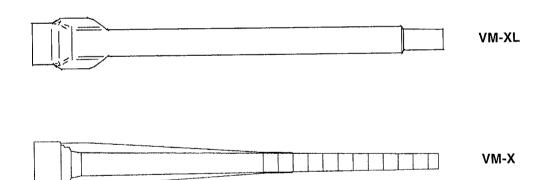
Dipl.-Ing. Georg Feistel Head of Division Construction Engineering of Deutsches Institut für Bautechnik Berlin, 15 June 2010 *beglaubigt* Lange Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32 acc. to Annex 4

MKT Injection System VME for concrete


Product (Steel) and Installation

Annex 1


of European technical approval

Cartridge: MKT Injection Mortar VME or MKT Injection Mortar VM-ME

385ml, 585ml and 1400ml injection mortar cartridge (Type: "side-by-side")

Static Mixer

Use category:

- Installation in dry, wet concrete or flooded bore holes

- Overhead installation

Temperature range: - 40°C to +40°C (max. short term temperature +40°C and

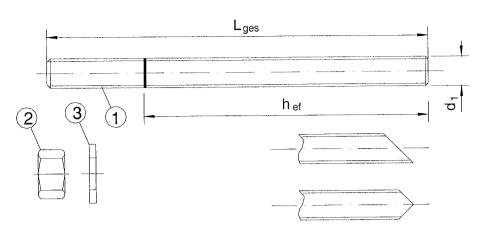
max. long term temperature +24°C)

- 40°C to +60°C (max. short term temperature +60°C and

max. long term temperature +43°C)

- 40°C to +72°C (max. short term temperature +72°C and

max. long term temperature +43°C)


MKT Injection System VME for concrete

Annex 2

Product (Injection mortar) and Intended use

of European technical approval

Materials (Threaded rod) Table 1a:

Part	Designation	Material						
Steel	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or Steel, hot-dip galvanised ≥ 40 µm acc. to EN ISO 1461							
1	Threaded rod	Steel, acc. to EN 10087 or EN 10263 Property class 5.8, 8.8, EN ISO 898-1						
2	Hexagon nut, acc, to DIN 934	Property class 5 (for class 5.8 rod) acc. to EN 20898-2, Property class 8 (for class 8.8 rod) acc. to EN 20898-2						
3	Washer, acc. to EN ISO 7089, EN ISO 7093, or EN ISO 7094	Steel, zinc plated						
Stair	iless steel							
1	Threaded rod	Material 1.4401/ 1.4571, acc. to EN 10088, > M24: Property class 50 EN ISO 3506 ≤ M24: Property class 70 EN ISO 3506						
2	Hexagon nut, acc, to DIN 934	Material 1.4401/ 1.4571, acc. to EN 10088, > M24: Property class 50 (for class 50 rod) EN ISO 3506 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506						
3	Washer, acc. to EN ISO 7089, EN ISO 7093, or EN ISO 7094	Material 1.4401/ 1.4571, acc. to EN 10088						
High	corrosion resistance steel (HCR)							
1	Threaded rod	Material 1.4529/ 1.4565, acc. to EN 10088, > M24: Property class 50 EN ISO 3506 ≤ M24: Property class 70 EN ISO 3506						
2	Hexagon nut, acc, to DIN 934	Material 1.4529/ 1.4565, acc. to EN 10088, > M24: Property class 50 (for class 50 rod) EN ISO 3506 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506						
3	Washer, acc. to EN ISO 7089, EN ISO 7093, or EN ISO 7094	Material 1.4529/ 1.4565, acc. to EN 10088						

Commercial standard rod with:

- Materials, dimensions and mechanical properties (Table 1a) Inspection certificate 3.1 acc. to EN 10204
- Marking of embedment depth

MKT Injection System VME for concrete	Annex 3
Materials (Threaded rod)	of European technical approval
	ETA-09/0350

Table 1b:	Materials (Reinforcing bar)

Abstract of EN 1992-1-1 Annex C, Table C.1, Properties of reinforcement:

Product form	Bars and de-coiled rods				
Class	В	С			
Charcteristic yield strength f _{yk} or f _{0,2k} (N/mm²)	400 to 600				
Minimum value of $k = (f_t / f_y)_k$	≥ 1,08	≥ 1,15 < 1,35			
Characteristic strain at maximum force ε _{uk} (%)	≥ 5,0	≥ 7,5			
Bendability	Bend/Re	ebend test			
Maximum deviation from nominal mass ≤ 8 (individual bar) (%) > 8		6,0 4,5			

Abstract of EN 1992-1-1 Annex C, Table C.2N, Properties of reinforcement:

Product form		Bars and de	e-coiled rods		
Class		В	С		
Min. value of related rip area f _{B,min}	nominal diameter of the rebar (mm) 8 to 12 > 12	•	040 056		

Rib height of the bar shall be in the range $0.05d \le h \le 0.07d$ (d: Nominal diameter of the bar; h: Rib height of the bar)

Regarding design of post-installed rebar as anchor see chapter 4.2.1

MKT Injection System VME for concrete	Annex 4
Materials (Reinforcing bar)	of European technical approval
J. J	ETA-09/0350

Table 2: Installation parameters for threaded rod

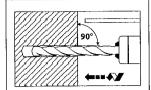
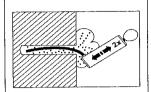
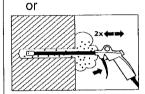

Anchor size			М8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	d ₀ =	[mm]	10	12	14	18	24	28	32	35
Embedment depth and bore hole	h _{ef,min} =	[mm]	60	60	70	80	90	96	108	120
depth	h _{ef,max} =	[mm]	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b ≥	[mm]	12	14	16	20	26	30	34	37
Torque moment	T _{inst}	[Nm]	10	20	40	80	120	160	180	200
	t _{fix,min} >	[mm]	0							
Thickness of fixture	t _{fix,max} <	[mm]		1500						
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm							
Minimum spacing	Smin	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120	135	150

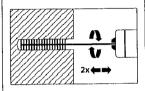
Table 3: Installation parameters for reinforcing bar

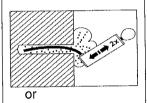

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ =	[mm]	12	14	16	18	20	24	32	35	37
Embedment depth and bore	h _{ef,min} =	[mm]	60	60	70	75	80	90	100	112	128
hole depth	h _{ef,max} =	[mm]	96	120	144	168	192	240	300	336	384
Diameter of steel brush	d _b ≥	[mm]	14	16	18	20	22	26	34	37	40
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d	0		· · · · · · · · · · · · · · · · · · ·			
Minimum spacing	S _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	125	140	160

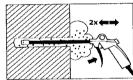
MKT Injection System VME for concrete	Annex 5
Installation parameters	of European technical approval
	ETA-09/0350

Installation instructions

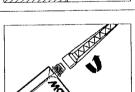

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table 2 or Table 3).

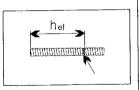


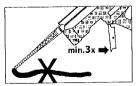

Where applicable water has to be removed from the drill hole prior to cleaning.


2a. Starting from the bottom of the drill hole, blow out the hole by compressed air (min. 6 bar) or by hand pump (Annex 8) at least two times. If the drill hole ground is not reached an extension shall be used. The hand-pump can be used for anchor sizes up to drill hole diameter 20 mm.

For drill holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) **must** be used.


2b. Check brush diameter acc. Table 5 and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table 5) a minimum of two times.


If the bore hole ground is not reached with the brush, a brush extension shall be used (Table 5).


2c. Finally blow the hole clean again with compressed air (min 6 bar) or a hand pump acc. Annex 8 a minimum of two times. If the bore hole ground is not reached an extension shall be used.

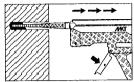
The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.

For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) **must** be used.

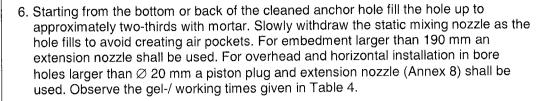
- 3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

 For every working interruption longer than the recommended working time (Table 4) as well as for new cartridges, a new static-mixer shall be used.
- 4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
- 5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.

MKT Injection System VME for concrete

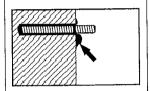

Annex 6

of European technical approval


ETA-09/0350

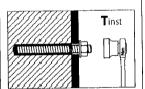
Installation instructions

Installation instructions (continuation)





7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.


The anchor should be free of dirt, grease, oil or other foreign material.

8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead installation fix embedded part (e.g. wedges).

9. Allow the mortar to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table 4).

10. After full curing, the add-on part can be installed with the maximum torque (Table 2) by using a calibrated torque wrench.

Table 4: Minimum curing time

Concrete temperature	Maximum-working time	Minimum curing time in dry concrete 1)
≥ 5 °C	60 min	72 h
≥ + 10 °C	45 min	36 h
≥ +20 °C	30 min	10 h
≥ +30 °C	20 min	6 h
≥ + 40 °C	12 min	4 h

¹⁾ When using the adhesive in wet concrete the curing times have to be doubled.

MKT Injection System VME for concrete	Annex 7
Installation instructions (continuation)	of European technical approval
Curing time	ETA-09/0350

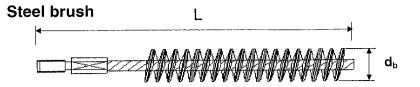
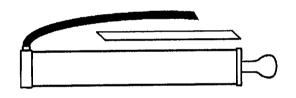
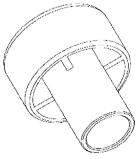




Table 5: Parameter cleaning and setting tools

Threaded rod	Rebar	d₀ Drill bit - Ø	d₅ Brush - Ø	d _{b,min} min. Brush - Ø	L Total length	Piston plug - Ø
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
M8		10	12	10,5	170	-
M10	8	12	14	12,5	170	-
M12	10	14	16	14,5	200	-
	12	16	18	16,5	200	<u></u>
M16	14	18	20	18,5	300	-
	16	20	22	20,5	300	-
M20	20	24	26	24,5	300	22
M24		28	30	28,5	300	27
M27	25	32	34	32,5	300	29
M30	28	35	37	35,5	300	34
	32	37	40	37,5	300	36

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm Rec. compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 37 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d_0): 24 mm to 37 mm

MKT Injection System VME for concrete	Annex 8
Cleaning and setting tools	of European technical approval
	ETA-09/0350

Table 6a:	Design	method A:
-----------	--------	-----------

Chara	acteristic valu	ues f	or ten	sion lo	ads i	n nor	n-crac	ked	concr	ete		
Anchor size threaded	rod				М8	M10	M12	M16	M20	M24	M27	M30
Steel failure												
Characteristic tension resistance, Steel, property class 5.8			N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension res Steel, property class 8.8	sistance,		N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Partial safety factor			γ _{Ms,N} 1)	[-]				1,	50		,	
Characteristic tension res Stainless steel A4 and H0 property class 50 (>M24)	CR,		$N_{Rk,s}$	[kN]	26	41	59	110	171	247	230	281
Partial safety factor		γ _{Ms,N} 1)	[-]			1,	87			2,	.86	
Combined pullout an	d concrete cone	e failu	ıre									
Characteristic bond resis	tance in non-crack	ed cor	ncrete C	20/25							,	·
Temperature range I ⁴⁾ :	dry and wet concrete flooded bore hole		τ _{Rk,ucr}	[N/mm²]	15	15	15	14	13	12	12	12
40°C/24°C			τ _{Rk,ucr}	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II ⁴⁾ :	dry and wet concr	rete	$ au_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	flooded bore hole		$ au_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperature range III ⁴⁾ :	dry and wet conci	rete	τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
72°C/43°C	flooded bore hole		τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Partial safety factor (dry	and wet concrete)	γмр =	= γ _{Mc} 1)	[-]		1	,8 ²⁾			2	,1 ³⁾	
Partial safety factor (floo	ded bore hole)	γмр:	= γ _{Mc} 1)	[-]				2	,1 ³⁾			
Increasing factors for			C30/37	[-]				1	,04		,.	_
non-cracked concrete	Ψο	(C40/50	[-]				1	,08			
		(C50/60	[-]				1	,10			····
Splitting failure												
Edge distance for h < he	1 + 5c ^{0,75}		_	[mm]			C _{cr,s}	$_{sp} = 2,70$)·h _{ef} +3	3,45 · d		
Edge distance for h ≥ h _e			C _{cr,sp}	[mm]	$c_{cr,sp} = 1,67 \cdot h_{ef} + 1,53 \cdot d$							
Axial distance			S _{cr,sp}	[mm]				2	C _{cr,sp}			
Partial safety factor (dry	and wet concrete)		γMsp 1)	[-]		1	,8 ²⁾			2	2,1 ³⁾	
Partial safety factor (floo	oded bore hole)		1) γMsp	[-]				2	2,1 ³⁾			

 $^{^{1)}}$ In absence of other national regulations $^{2)}$ The partial safety factor γ_2 = 1.2 is included. $^{3)}$ The partial safety factor γ_2 = 1.4 is included. $^{4)}$ Explanations see section 1.2

MKT Injection	System	VME for	concrete

Application with threaded rod Design method A:

Characteristic values for tension loads in non-cracked concrete

Annex 9

of European technical approval

Table 6b: Design method A:

Characteristic values for tension loads in cracked concrete

Anchor size threaded	rod			M12	M16	M20	M24
Steel failure		· · · · · · · · · · · · · · · · · · ·					
Characteristic tension res Steel, property class 5.8	istance,	N _{Rk,s}	[kN]	42	78	122	176
Characteristic tension res Steel, property class 8.8	istance,	N _{Rk,s}	[kN]	67	125	196	282
Partial safety factor		γMs,N 1)	[-]		1,	50	
Characteristic tension res Stainless steel A4 and H0 property class 50 (>M24)	CR,	N _{Rk,s}	[kN]	59	110	171	247
Partial safety factor		γ _{Ms,N} 1)	[-]		1,	87	
Combined pullout an	d concrete cone failure						
Characteristic bond resist	tance in cracked concrete C2	20/25				,	
Temperature range l ⁴⁾ :	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	7,5	6,5	6,0	5,5
40°C/24°C	flooded bore hole	₹Rk,cr	[N/mm²]	7,5	6,0	5,0	4,5
Temperature range II ⁴⁾ :	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	4,5	4,0	3,5	3,5
60°C/43°C	flooded bore hole	T _{Rk,cr}	[N/mm²]	4,5	4,0	3,5	3,5
Temperature range III ⁴⁾ :	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,0	3,0
72°C/43°C	flooded bore hole	₹Rk,cr	[N/mm²]	4,0	3,5	3,0	3,0
Partial safety factor (dry	and wet concrete)	$\gamma_{Mp} = \gamma_{Mc}^{1)}$	[-]	1	,8 ²⁾	2	,1 ³⁾
Partial safety factor (floor		$\gamma_{Mp} = \gamma_{Mc}^{1}$	[-]		2	,1 ³⁾	
		C30/37	[-]		1	,04	
Increasing factors for non-cracked concrete	Ψc	C40/50	[-]	1,08		,08	
		C50/60	[-]	1,10			
Splitting failure							
Edge distance for h < her	+ 5c ^{0,75}		[mm]		_{r,sp} = 2,70		
Edge distance for h ≥ h _{et}		- C _{cr,sp}	[111111]	C,	cr,sp = 1,6	7 · h _{ef} + 1,5	53 · d
Axial distance		S _{cr,sp}	[mm]	2 c _{cr,sp}			
Partial safety factor (dry	and wet concrete)	γMsp ¹⁾	[-]	1,8 2)			2,1 ³⁾
Partial safety factor (floo	ded bore hole)	γMsp ¹⁾	[-]		2	2,1 ³⁾	

MKT Injection System	VME for concrete	е
-----------------------------	------------------	---

Application with threaded rod Design method A:

Characteristic values for tension loads in cracked concrete

Annex 10

of European technical approval

 $^{^{1)}}$ In absence of other national regulations $^{2)}$ The partial safety factor γ_2 = 1.2 is included. $^{3)}$ The partial safety factor γ_2 = 1.4 is included. $^{4)}$ Explanations see section 1.2

Table 7: Design method A: Characteristic values for shear loads in cracked and non-cracked concrete

Characteristic valu	162 101	Silcai	Ioau	3 111 0	dono					
Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm		_								
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γ _{Ms,V} 1)	[-]				1,	25			
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Partial safety factor	γ _{Ms,V} 1)	[-]			1,	56			2,	38
Steel failure with lever arm										
Characteristic bending moment, Steel, property class 5.8	M ⁰ Rk,s	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Partial safety factor	γMs,V 1)	[-]				1	,25		·	·
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ^O Rk,s	[Nm]	26	52	92	232	454	784	832	1125
Partial safety factor	γ _{Ms,V} 1)	[-]			1	,56			2	,38
Concrete pryout failure										
Factor k in equation (5.7) of Technical Rep TR 029 for the design of Bonded Anchors	ort						2,0			
Partial safety factor	γMcp 1)	[-]	1,50 ²⁾							
Concrete edge failure									·,,	
See section 5.2.3.4 of Technical Report TF	R 029 for t	he desi	gn of Bo	nded Ar	nchors	···				
Partial safety factor	γ _{Mc} 1)	[-]				1,	50 ²⁾			

¹⁾ In absence of other national regulations

MKT Injection System VME for concrete

Application with threaded rod
Design method A:
Characteristic values for shear loads in cracked and noncracked concrete

Annex 11

of European technical approval

²⁾ The partial safety factor $\gamma_2 = 1.0$ is included.

Table 8: Displacements for tension loads 1)

Anchor size thre	Anchor size threaded rod				M12	M16	M20	M24	M27	M30			
Temperature ran	nge 40°C/24°0	C for non-cracked	concret	e C20/2	25								
Displacement	δ _{NO}	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035			
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140			
Temperature range 72°C/43°C and 60°C/43°C for non-cracked concrete C20/25													
Displacement	δ _{N0}	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043			
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161			
Temperature ra	nge 40°C/24°	C for cracked cond	crete C2	0/25						,			
Displacement	δ _{No}	[mm/(N/mm²)]	-	-	0,032	0,037	0,042	0,048	-	-			
Displacement	δ _{N∞}	[mm/(N/mm²)]	+	-	0,21	0,21	0,21	0,21	-	-			
Temperature ra	Temperature range 72°C/43°C and 60°C/43°C for cracked concrete C20/25												
Displacement	δ _{N0}	[mm/(N/mm²)]	_	-	0,037	0,043	0,049	0,055	-				
Displacement	δ _{N∞}	[mm/(N/mm²)]	-	-	0,24	0,24	0,24	0,24	-	-			

 $^{^{1)}}$ Calculation of the displacement for design load Displacement for short term load = $\delta_{\text{No}} \cdot \tau_{\text{Sd}} /$ 1,4; Displacement for long term load = $\delta_{\text{N}\infty} \cdot \tau_{\text{Sd}} /$ 1,4; $(\tau_{\text{Sd}} : \text{design bond strength})$

Table 9: Displacement for shear load ²⁾

Anchor size				M10	M12	M16	M20	M24	M27	M30
Displacement	δνο	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Displacement	δ _{V∞}	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

²⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{\text{No}} \cdot V_{\text{d}} /$ 1,4; Displacement for long term load = $\delta_{\text{N}\infty} \cdot V_{\text{d}} /$ 1,4; (V_d: design shear load)

MKT Injection System VME for concrete	Annex 12
Application with threaded rod	of European technical approval
Displacements	ETA-09/0350

Table 10a: Design method A:

Characteristic values for tension loads in non-cracked concrete

	icieristic v			CHSIOI									
Anchor size reinforcit	ng bar				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Steel failure (Properti	es acc. to An	nex	4)							,	,		
Characteristic tension resistance, BSt 500 S acc. to DIN 488-2:1986 or E DIN 488-2:2006 ⁵⁾		N _{Rk,s}	[kN]	28	43	62	85	111	173	270	339	442	
Partial safety factor			γMs,N 1)	[-]					1,40				
Combined pullout and	d concrete co	one f	ailure										
Characteristic bond resist	ance in non-cra	acked	concre	te C20/25		<u>-</u> -			,			 	,
Temperature range I ⁴⁾ :	dry and wet concrete		₹Rk,ucr	[N/mm²]	11	11	10	10	9,5	9,0	9,0	8,5	8,5
40°C/24°C	flooded bore h	ole	τ _{Rk,ucr}	[N/mm²]	11	10	9,0	8,0	7,5	6,5	5,5	5,0	5,0
Temperature range II ⁴⁾ :	dry and wet concrete		τ _{Rk,ucr}	[N/mm²]	6,5	6,5	6,5	6,0	6,0	5,5	5,5	5,0	5,0
60°C/43°C	flooded bore hole		τ _{Rk,ucr}	[N/mm²]	6,5	6,5	6,5	6,0	6,0	5,5	4,5	4,5	4,0
Temperature range III ⁴⁾ :	dry and wet concrete		$ au_{ m Rk,ucr}$	[N/mm²]	6,0	6,0	5,5	5,5	5,5	5,0	4,5	4,5	4,5
72°C/43°C	flooded bore hole		τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,5	5,5	5,0	4,0	4,0	3,5
Partial safety factor (dry a concrete)	and wet	γMp ³	= γ _{Mc} 1)	[-]							1 3)		
Partial safety factor (flood	ded bore hole)	γмр∶	= γ _{Mc} ¹⁾	[-]	2,1 ³⁾								
		(C30/37	[-]					1,04				
Increasing factors for non-cracked concrete	Ψc	(C40/50	[-]					1,08				
		(C50/60	[-]					1,10				
Splitting failure													
Edge distance for h < her	+ 5c ^{0,75}			[mm]				c _{cr,sp} = 2					
Edge distance for h≥h _e	ef + 5c ^{0,75}		C _{cr,sp}	[mm]				c _{cr,sp} =	1,67 · h _∈	+ 1,53	·d		
Axial distance			S _{cr,sp}	[mm]		2 C _{cr,sp}							
Partial safety factor (dry	and wet concre	ete)	γ _{Msp} 1) [-]		1,8 ²⁾ 2,1 ³⁾					,1 ³⁾		
Partial safety factor (floo	ded bore hole)		γMsp 1						2,1 ³)			

Regarding design of post-installed rebar as anchor see chapter 4.2.1

MKT Injection System VME for concrete	Annex 13
Application with reinforcing bar Design method A:	of European technical approval
Characteristic values for tension loads in non-cracked concrete	ETA-09/0350

 $^{^{1)}}$ In absence of other national regulations $^{2)}$ The partial safety factor γ_2 = 1.2 is included. $^{3)}$ The partial safety factor γ_2 = 1.4 is included. $^{4)}$ Explanations see section 1.2 $^{5)}$ For reinforcing bars which do not comply with DIN 488: The characteristic resistance $N_{Rk,s}$ shall be determined acc. to Technical Report TR 029, equation (5.1).

Design method A: Table 10b: Characteristic values for tension loads in cracked concrete

Anchor size reinforcir			Ø12	Ø14	Ø16	Ø20	Ø 2 5		
Steel failure (Propertie	es acc. to Annex 4)		<u></u>	<u> </u>	1				
Characteristic tension resi BSt 500 S acc. to DIN 488 E DIN 488-2:2006 ⁵⁾		N _{Rk,s}	[kN]	62	85	111	173	270	
Partial safety factor			YMs,N 1)	[-]			1,40		
Combined pullout and	l concrete cone failure								
Characteristic bond resista	ance in cracked concrete C2	20/25							···
Temperature range I ⁴⁾ :	dry and wet concrete		τ _{Rk,cr}	[N/mm²]	5,5	4,5	4,5	4,0	3,5
40°C/24°C	flooded bore hole		τ _{Rk,cr}	[N/mm²]	5,5	4,5	4,0	3,5	3,0
Temperature range II ⁴⁾ :	dry and wet concrete		τ _{Rk,cr}	[N/mm²]	3,0	3,0	2,5	2,5	2,0
60°C/43°C	flooded bore hole		τ _{Rk,cr}	[N/mm²]	3,0	3,0	2,5	2,5	2,0
Temperature range III ⁴⁾ :	dry and wet concrete		τ _{Rk,cr}	[N/mm²]	3,0	2,5	2,5	2,0	2,0
72°C/43°C	flooded bore hole		τ _{Rk,cr}	[N/mm²]	3,0	2,5	2,5	2,0	2,0
Partial safety factor (dry a	and wet concrete)	$\gamma_{Mp} = \gamma_{Mc}^{1)}$		[-]	1,8 ²⁾ 2,1 ³⁾				
Partial safety factor (flood	led bore hole)	γмр	= γ _{Mc} 1)	[-]	2,1 ³⁾				
I see to be a few		C30/37		[-]	1,04				
Increasing factors for non-cracked concrete	Ψc	_	C40/50	[-]	1,08				
		C50/60		[-]	1,10				
Splitting failure					.,				
Edge distance for h < h _{ef}			[mm]	$c_{cr,sp} = 2,70 \cdot h_{ef} + 3,45 \cdot d$					
Edge distance for h≥h _{ef}		C _{cr,sp}	[1,1,1,1]	$c_{cr,sp} = 1,67 \cdot h_{ef} + 1,53 \cdot d$					
Axial distance		S _{cr,sp}	[mm]	2 C _{cr,sp}					
Partial safety factor (dry and wet concrete)			γMsp ¹	[-]	1,8 ²⁾ 2,1 ³⁾			!,1 ³⁾	
Partial safety factor (floor		γMsp 1	$\gamma_{\rm Msp}^{-1)}$ [-] 2,1 ³		2,1 ³⁾				

¹⁾ In absence of other national regulations

Regarding design of post-installed rebar as anchor see chapter 4.2.1

MKT Injection System VME for concrete	Annex 14
Application with reinforcing bar Design method A:	of European technical approval
Characteristic values for tension loads in cracked concrete	ETA-09/0350

The partial safety factor $\gamma_2 = 1.2$ is included.

3) The partial safety factor $\gamma_2 = 1.4$ is included.

4) Explanations see section 1.2

5) For reinforcing bars which do not comply with DIN 488: The characteristic resistance $N_{RK,s}$ shall be determined acc. to Technical Report TR 029, equation (5.1).

Table 11: Design method A: Characteristic values for shear loads in cracked and non-cracked concrete

Anchor size reinforcing bar			Ø8	Ø10	Ø12	Ø14	Ø16	Ø 20	Ø 25	Ø28	Ø32
Steel failure without lever arm (Pr	operties	acc. A	nnex 4	1)	<i>"</i>						
Characteristic shear resistance, BSt 500 S acc. to DIN 488-2:1986 or E DIN 488-2:2006 ³⁾	V _{Rk,s}	[kN]	14	22	31	42	55	86	135	169	221
Partial safety factor	γ _{Ms,V} 1)	[-]	1,5								
Steel failure with lever arm (Prope	Steel failure with lever arm (Properties acc. Annex 4)								,		
Characteristic bending moment, BSt 500 S acc. to DIN 488-2:1986 or E DIN 488-2:2006 ⁴⁾	M ⁰ _{Rk,s}	[Nm]	33	65	112	178	265	518	1012	1422	2123
Partial safety factor	γ _{Ms,V} 1)	[-]	1,5								
Concrete pryout failure											
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors				2,0							
Partial safety factor	γ _{Mcp} 1)	[-]	1,50 ²⁾								
Concrete edge failure											
See section 5.2.3.4 of Technical Report	TR 029 fo	or the de	esign of	bonded	l anchoi	rs					
rtial safety factor $\gamma_{Mc}^{(1)}$ [-] 1,50 2											

determined acc. to Technical Report TR 029, equation (5.6b).

Regarding design of post-installed rebar as anchor see chapter 4.2.1

MKT Injection System VME for concrete

Application with reinforcing bar Design method A:

Characteristic values for shear loads in cracked and noncracked concrete

Annex 15

of European technical approval

In absence of other national regulations
 The partial safety factor γ₂ = 1.0 is included.
 For reinforcing bars which do not comply with DIN 488: The characteristic resistance V_{Rk,s} shall be determined acc. to Technical Report TR 029, equation (5.5).
 For reinforcing bars which do not comply with DIN 488: The characteristic resistance M⁰_{Rk,s} shall be

Table 12: Displacements for tension loads 1)

Anchor size reinforcing bar			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø 25	Ø28	Ø32
Temperature range 40°C/24°C for non-cracked concrete C20/25											
Displacement	δ_{N0}	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature range 72°C/43°C and 60°C/43°C for non-cracked concrete C20/25											
Displacement	δ_{N0}	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
Displacement	$\delta_{N_{\infty}}$	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperature	range 40	°C/24°C for crac	ked cor	crete C	20/25			hane,	<u> </u>	·	·
Displacement	δ_{N0}	[mm/(N/mm²)]	-	-	0,032	0,035	0,037	0,042	0,049	_	-
Displacement	δ _{N∞}	[mm/(N/mm²)]	-	-	0,21	0,21	0,21	0,21	0,21	-	-
Temperature range 72°C/43°C and 60°C/43°C for cracked concrete C20/25											
Displacement	δηο	[mm/(N/mm²)]	_	-	0,037	0,040	0,043	0,049	0,056	-	-
Displacement	δ _{N∞}	[mm/(N/mm²)]	-	-	0,24	0,24	0,24	0,24	0,24	_	-

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{N0} \cdot \tau_{Sd} / 1,4$; Displacement for long term load = $\delta_{N\infty} \cdot \tau_{Sd} / 1,4$; (τ_{Sd} : design bond strength)

Table 13: Displacement for shear load ²⁾

BST 500 S			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø 25	Ø28	Ø 32
Displacement	δνο	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
Displacement	δν∞	[mm/(kN)]	0,09	0,08	0,07	0,06	0,06	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{No} \cdot V_d / 1,4$; Displacement for long term load = $\delta_{N\infty} \cdot V_d / 1,4$; (V_d: design shear load)

MKT	Injection	System	VME for	concrete
			· · · · · · · · · · · · · · · · · · ·	

Annex 16

of European technical approval

Application with reinforcing bar Displacements